Syntaxin 5 Overexpression and β-Amyloid 1–42 Accumulation in Endoplasmic Reticulum of Hippocampal Cells in Rat Brain Induced by Ozone Exposure
نویسندگان
چکیده
Oxidative stress is a risk factor for Alzheimer's disease and it is currently accepted that oxidative damage precedes the overproduction of A42 peptide. We have reported that ozone causes oxidative stress inducing neurodegeneration in the brain of rats. It is associated with A42 overproduction and intracellular accumulation in hippocampus. Organelles like mitochondria, intracellular membranes, and endoplasmic reticulum have been identified as sites of A42 production and accumulation affecting cellular metabolism. However whether ozone exposure induces overproduction and/or accumulation of A42 in endoplasmic reticulum has not been studied. We evaluated this effect in the endoplasmic reticulum of hippocampal cells of rats exposed chronically to low doses of ozone (0.25 ppm) at 7, 15, 30, 60, and 90 days. The effect of the presence of A42 in endoplasmic reticulum was analyzed evaluating the expression of the chaperone Syntaxin 5. Our results show an accumulation of A42 peptide in this organelle. It was observed by immunofluorescence and by WB in endoplasmic fractions from hippocampal cells of rats at 60 and 90 days of treatment. Significant overexpression of the chaperone Syntaxin 5 at 60 and 90 days of treatment was observed ((⁎) P < 0.05). These results indicate that the exposure to environmental pollutants could be involved as a risk factor for neurodegenerative processes.
منابع مشابه
Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density
Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...
متن کاملEffect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کاملNeuroprotective effects of epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: a histological study
Abstract Introduction: Neurodegeneration change is one of the hallmark symptoms of which Alzheimer’s disease (AD) can be modeled by β-amyloid injection into specific regions of brain. (-)-Epigallocatechin-3-gallate (EGCG) is a potent antioxidant agent that its role against oxidative stress and inflammation has been shown in prior studies. In the present study, we have wanted to determine wh...
متن کاملCalcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex
Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...
متن کاملThe Beneficial Effect of (-)-Epigallocatechin-3-Gallate in an Experimental Model of Alzheimer’s disease in Rat: a Behavioral Analysis
Progressive cognitive decline is one of the hallmark symptoms of Alzheimer’s disease (AD) which can be modeled by β-amyloid injection into specific regions of brain. Since epigallocatechin-3-gallate (EGCG) is a potent antioxidant agent which its role against oxidative stress and inflammation has been shown in prior studies, we tried to determine whether EGCG administration protects against β-am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016